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Abstract. We consider the application of the recursion method to the calculation of one-particle Green’s
functions for strongly correlated systems and propose a new way how to extract the information about
the infinite system from the exact diagonalisation of small clusters. Comparing the results for several
cluster sizes allows us to establish those Lanczos coefficients that are not affected by the finite size effects
and provide the information about the Green’s function of the macroscopic system. The analysis of this
‘bulk-related’ subset of coefficients supplemented by alternative analytic approaches allows to infer their
asymptotic behaviour and to propose an approximate analytical form for the ‘terminator’ of the Green’s
function continued fraction expansion for the infinite system. As a result, the Green’s function acquires
the branch cut singularity corresponding to the incoherent part of the spectrum. The method is applied
to the spectral function of one-hole in the Majumdar-Ghosh model (the one-dimensional t− J − J ′ model
at J ′/J = 1/2). For this model, the branch cut starts at finite energy ω0, but there is no upper bound of
the spectrum, corresponding to a linear increase of the recursion coefficients. Further characteristics of the
spectral function are band gaps in the middle of the band and bound states below ω0 or within the gaps.
The band gaps arise due to the period doubling of the unit cell and show up as characteristic oscillations
of the recursion coefficients on top of the linear increase.

PACS. 75.10.Pq Spin chain models – 71.10.Pm Fermions in reduced dimensions – 71.27.+a Strongly
correlated electron systems; heavy fermions

1 Introduction

The one-hole spectral function (or the imaginary part of
the one-particle Green’s function) is a central quantity in
the theory of strongly correlated systems since it contains
the information about the charge dynamics in a corre-
lated background [1]. It was often studied in the theory of
high-temperature superconductors (HTSC) using the sev-
eral variants of the t -J or the Hubbard model [2]. Other
examples are the Kondo peak seen in the spectral func-
tion of heavy fermion compounds [4], or the features of
spin-charge separation for one-dimensional problems [5].
The most important experimental method to measure the
one-hole spectral function is angle-resolved photoemission.

A powerful method to calculate the one-hole spectral
function for strongly correlated systems consists in the
exact diagonalisation of small clusters [2] using the Lanc-
zos method [3]. That can be understood like a tridiago-
nalisation of the Hamilton matrix. The method and its
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application in electronic structure theory has already a
long history. It is also known as recursion method accord-
ing to pioneering studies of Haydock and coworkers in the
seventies [6,7]. That time, however, it was mostly applied
to different problems of noninteracting electrons. The nu-
merous spectral function calculations using the different
versions of the t-J or the Hubbard model [2] have usu-
ally very large finite size effects. Normally, they provide
the spectral function only as a sequence of well separated
δ-peaks. On the other hand, it is already known for long
time that the recursion method has the potential to pro-
vide the information about the bulk spectral function by
a proper termination of the continued fraction represen-
tation of the Green’s function [8,9]. That idea was used
in the field of many-body dynamics for pure spin systems
by Viswanath and Müller [10].

Below we would like to present an improvement of the
recursion method for the charge dynamics in strongly cor-
related systems. By finding the correct asymptotic be-
haviour of the recursion coefficients an and bn for n →
∞ which is not influenced by boundary effects we are
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able to extract the bulk spectral function. The method
will be demonstrated for the example of one-hole in the
Majumdar-Ghosh (MG) model, i.e. in the 1D spin chain
with exchange terms between first J and second neigh-
bours J ′ at the special ratio J ′/J = 1/2. It has the ad-
vantage that one knows explicitly the ground-state wave
function of the spin system [11]. The MG model is con-
sidered here as a generic model for a 1D spin chain with a
spin gap. That means that the spin correlation functions
decay exponentially. Therefore, the MG model is a good
candidate to present our method since the fast decay of
spin correlation functions tends to minimise the bound-
ary effects on the recursion coefficients. We analyse also
the recursion coefficients corresponding to a recently pre-
sented variational study of the one-hole spectral function
using the subspace of one-spinon wave-functions [12]. It
completes our approach by providing additional informa-
tion on the asymptotic behaviour of recursion coefficients
and on the spectral function. The main physical question
connected with the MG model is: how are the features of
spin-charge separation in 1D modified by a spin gap. We
would like to present a rather complete description of the
one-hole spectral function of the MG model. The paper is
organised as follows: first we recall the recursion method
(Sect. 2) and introduce the one-dimensional t − J − J ′
model (Sect. 3). In Section 4 we collect analytical and nu-
merical results in the strong coupling limit J, J ′ → 0 and
in Section 5 we present the asymptotic behaviour of the
recursion coefficients. That analysis is used to reconstruct
the spectral function (Sect. 6) and to calculate the bound
states and band gaps (Sect. 7).

2 The recursion method

The recursion method (RM) [6,7] is a powerful tool to cal-
culate the matrix elements of the resolvent (z − Ĥ)−1 of
a Hamiltonian Ĥ . Given an arbitrary starting state |u0〉,
the RM generates a new basis in which the Hamiltonian
matrix is tridiagonal. One can formulate the RM in two
ways, in the Hamiltonian or the Liouvillian representa-
tion [10]. The latter one corresponds to a generalisation of
the RM to the Liouvillian space of operators. Usually, it is
used for finite temperature problems. In the present case,
however, both formulations will be demonstrated to be
identical and we concentrate on the Hamiltonian variant.

In the Hamiltonian representation, the RM starts from
a vector in Hilbert space, i.e. from some wave function of
the system |u0〉. The new basis (orthogonal, but not nor-
malised) is generated according to the Lanczos procedure

|un+1〉 = (Ĥ − an)|un〉 − b2
n|un−1〉 (1)

with |u−1〉 = 0, and b2
0 = 〈u0|u0〉. The coefficients are

calculated from

an = 〈un|Ĥ |un〉/〈un|un〉, b2
n = 〈un+1|un+1〉/〈un|un〉.

(2)
Having calculated the recursion coefficients an and bn, one
can easily find the matrix element of the resolvent with

|u0〉:

R(z) = 〈u0|(z − Ĥ)−1|u0〉 (3)

=
b2
0

z − a0 − b21

z−a1− b22

...

≡ b2
0

z − a0−
b2
1

z − a1− · · ·

For a starting state corresponding to one hole in the cor-
related state, the resolvent R(z) is identical to the one-
particle Green’s function and its imaginary part gives the
spectral function we are interested in.

In this form the RM was applied to many body prob-
lems (see e.g. Refs. [2,13,14] and Refs. therein) several
times. In these cases the resolvent matrix elements of the
full many body Hamiltonian were calculated. This work
can be done numerically for finite systems. Unfortunately,
at present, such calculations are only possible for very
small clusters. The resulting R(z) may be related with
the dynamic susceptibility [13]. The problem is that R(z)
for a finite system is a rational function that may be
represented as a set of poles. The corresponding spectral
density consists of a set of δ-functions which are usually
represented using an artificial broadening. This is quite
different from that what we can expect for a macroscopic
system of interacting particles. The spectrum of a nontriv-
ial interacting system contains usually a continuous part
(the “continuum” which is connected with a branch cut
in R(z)) and eventually one or several isolated states (the
point spectrum). A sequence of broadened δ-functions is
a very poor approximation for the continuous part of the
spectrum. Furthermore, such a procedure neglects com-
pletely the important difference between the continuum
and isolated poles. All the fine structure of the spectrum
is completely lost.

Below we will show what kind of information about the
macroscopic system may be extracted from the exact di-
agonalisation studies of small clusters and propose a more
physical procedure of smoothing the spectral density. The
ED has been performed for the 1D t− J − J ′ model with
12, 16, 20, and 24 lattice sites according to the method
described in references [2,13]. From these calculations we
extract the information about the bulk related asymp-
totic behaviour of the recursion coefficients an and bn for
large n. Additional information about the asymptotics can
be obtained using the variational approach presented in
reference [12].

3 Majumdar-Ghosh model

In order to demonstrate our method, we specialise to the
calculation of the one-hole spectral function in the one-
dimensional Majumdar-Ghosh model (the 1D t − J − J ′
model with J ′/J = 1/2). The interest to 1D models
has been revived after the creation of quasi one dimen-
sional transition metal compounds. The reports on angle-
resolved photoemission spectroscopy (ARPES) [15] stud-
ies show that the most striking theoretical prediction for
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1D strongly correlated systems, the spin-charge separa-
tion, can be observed. The interest to this phenomenon has
increased after Anderson’s proposal that it explains the
properties of 2D cuprate superconductors [16]. The cal-
culation of one-particle Green’s functions for 1D strongly
correlated system is a complex and non-trivial task. The
complete answer is absent even for the exactly solvable
1D Hubbard model [17]. That is why the development
of simple approximate approaches remains important. In
the present study we consider the t−J −J ′ model, which
describes the basic physics of the electron motion in 1D
transition metal compounds

Ĥ = t̂ + Ĵ + Ĵ ′, (4)

where
t̂ = −t

∑
i,α

(
Xα0

i X0α
i+1 + h.c.

)
,

Ĵ =
J

2

∑
i,α,β

Xαβ
i Xβα

i+1 , Ĵ ′ =
J ′

2

∑
i,α,β

Xαβ
i Xβα

i+2,

and we introduce Hubbard projection operators that act in
the subspace of on-site states, namely boson-like operators

Xαβ
i ≡ |α, i〉 〈β, i| , α, β =↑, ↓,

and fermion-like ones Xα0
i , i being the site index. To make

contact with the standard notation we note that

1
2

∑
α,β

Xαβ
i Xβα

j = SiSj +
1
4
ninj ,

for i 6= j, where Si and ni are spin and density operators,
respectively. The exchange term to second neighbours J ′
is especially relevant in 1D compounds with a spin-Peierls
transition, like CuGeO3. For J ′/J larger or equal 0.2411
the quasi long-range order (algebraically decaying spin-
correlation functions) of the 1D antiferromagnetic spin-
half Heisenberg model is destroyed and one observes a
gap in the spin-excitation spectrum [18].

Our aim is to calculate the one-particle two-time re-
tarded Green’s function

G(k, z) = 〈〈Xσ0
k |X0σ

k 〉〉 (5)

for z = ω + ı0+ and the spectral density

A(k, ω) = − 1
π

ImG(k, ω + ı0+), (6)

where Xσ0
k =

√
2/L

∑
m e−ıkmXσ0

m , and L is the num-
ber of sites, the factor

√
2 is introduced for the purpose

of normalisation. The above one-particle Green’s function
describes the motion of one hole in the correlated state de-
scribed by the Majumdar-Ghosh wave function [11] (from
now on we consider the special case J ′/J = 1/2). The
notation means

〈〈A|B〉〉 ≡ −i

∫ ∞

t′
dteiω(t−t′)〈{A(t), B(t′)}〉, (7)

with {. . . , } denoting the anticommutator, and where the
expectation value means the thermal average over a grand
canonical ensemble: 〈...〉 = Q−1Sp[e−β(H−µN)...], Q =
Spe−β(H−µN). Here Sp implies the trace of an operator,
N is the particle number operator, β = (kT )−1 is an in-
verse temperature, and µ represents the chemical poten-
tial. The time dependence of the operator A(t) is given
by A(t) = eit(H−µN)Ae−it(H−µN). At zero temperature,
〈...〉 goes over into the expectation value with the ground-
state wave function |Ψ0〉. It is not difficult to see that in
the given case the one-particle Green’s function (5) may
be formulated as a resolvent matrix element

G(k, z) = 〈Xσ0
k |(z + E0 − Ĥ)−1|Xσ0

k 〉, (8)

with the state |Xσ0
k 〉 = Xσ0

k |Ψ0〉 denoted in the same
way as the corresponding operator. It means also that
the Hamiltonian and Liouvillian formulation of the RM
are now equivalent if we take into account the shift of
the diagonal recursion coefficients an by the ground-state
energy E0 of the pure spin system.

When the ground state is degenerate, as it is the case
in the Majumdar-Ghosh model, we have to take Sp over
the ground-state manifold in the calculation of 〈...〉 in (7).
We have found that the spectral function calculated for
two orthogonal ground states of the model according to
the prescription given in Section 6 coincides within the
accuracy of the method.

4 Strong coupling limit

For the following analysis it is important to recall some
former results for the one-hole spectral function in the
MG model using a variational ansatz [12]. It was shown
that one can give an exact result in the strong coupling
limit J, J ′ → 0. In this limit only the t̂ operator remains
in equation (4). Note that it is a true many-body Hamil-
tonian due to the constraint of no double occupancy, it
is often called the t̂-model. Formally, the t̂-model is the
limiting case of various models (U → ∞ of the Hubbard
model, J → 0 of the t−J model, etc.), and its ground state
is strongly degenerate. The degeneration is removed by an
infinitesimal perturbation that fixes the ground state. It is
clear that different spin-models give different answers for
the Green’s function (5) and the spectral density (6) in
the limit of the t̂-model since they may differ by the spin
ground state [12].

The exact result was found using the basis operator
set

vm,r =

√
2
L

∑
α1,...,αr

Xσα1
m Xα1α2

m+g . . . X
αr−1αr

m+r−gXαr0
m+r, (9)

g = r/ |r| . The operator vm,r may be interpreted as holon
(’right end’ . . .Xαr0

m+r) and spinon (’left end’ Xσα1
m . . .)

excitations connected by a string of spin ’flips’ (in fact,
this string contains also diagonal spin operators but they
also create excitations in a quantum antiferromagnet).
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The double Fourier transform over the m and r indices
gives exact eigenstates of the t̂-term for any magnetic
background. In the case of finite exchange values, the ba-
sis set (9) is not complete and corresponds to the single
spinon approximation.

It was shown that the Green’s function (5) for fixed k
has a formal analogy with the on-site Green’s function of
the 1D tight-binding model of non-interacting electrons in
a non-orthogonal basis

G(k, z) =
1
L

∑
Q

2Z(Q)
z + εh(k −Q)

(10)

=
1√

z2 − 4t2

[
1 +

∞∑
n=1

2 cos kn 〈Ω0→n〉 τn(z)

]
,

where εh(k) ≡ 2t cos(k).
The spectral function may be represented like

A(k, ω) =
∫ π

−π

dQ

π
Z(Q)δ(ω + εh(k −Q)), (11)

with

Z(Q) ≡ 1
2

∞∑
n=−∞

exp [−ı(Q− π)n] 〈Ω0→n〉 , (12)

Ω0→r =
∑

α1,...,αr ,σ

Xσα1
0 . . . X

αr−1αr

r−g Xαrσ
r

= (2S0Sg +
1
2
)(2SgS2g +

1
2
) . . . (2Sr−gSr +

1
2
) ,

τ(z) ≡ z −√z2 − 4t2

2t
=

t

z−
t2

z−
t2

z− · · ·

Integrating over the δ-function, the spectral function (11)
may be given in the form [19]

A(k, ω) =
Z(k + φ) + Z(k − φ)

π
√

4t2 − ω2
, cos(φ) = − ω

2t
·

(13)
The expressions (11,13) imply that the spectrum is con-
tinuous and bounded on the interval −2t ≤ ω ≤ 2t for all
the possible spin models in the considered limit. It may be
interpreted as holon motion with the dispersion εh(k) with
an immovable spinon. The difference in hole spectral den-
sities and Green’s functions arises due to the expectation
value Z(Q) that depends on the spin part of the Hamilto-
nian. Some parts of the spectrum may be excluded by a
vanishing Z(Q).

For the 1D pure (non frustrated) antiferromagnetic
Heisenberg model, Z(Q) was given in references [19,20] as
Z(Q) ∝ Θ(Q−π/2)/

√
Q− π/2. The square-root singular-

ity leads to additional peaks in the spectral function, such
that for each k value one can distinguish well pronounced
spinon and holon peaks (for details see also Ref. [21]). For
the Majumdar-Ghosh (MG) wave function, on the other
hand, one finds Z(Q) = 3

2 (1 + cosQ) / (5 + 4 cos 2Q) (see
Ref. [22]) where Z(Q) is non zero for all values of Q. The
peak at Q = π/2 becomes very wide. That leads to a large

damping of the holon peak [12]. One finds the following
explicit formula for the spectral function of the MG model
in the limit J, J ′ → 0:

A(k, ω) =
3

8tπ
√

1− x2

20 + 4x cos k + 16(2x2 − 1) cos 2k − 8D

25 + 40(2x2 − 1) cos 2k + 8 cos 4k + 8(8x4 − 8x2 + 1)
,

x ≡ ω

2t
, D ≡ x cos 3k + 4x3 cos k (14)

which is non zero for all −2t ≤ ω ≤ 2t.
Now, for the MG model, we compare the continued

fraction expansion of the one-particle Green’s function for
the macroscopic system (10) with that for a finite ring.
The summation of series in (10) gives

G(k, z) =
4− 2

[
2τ(z) + τ3(z)

]
cos k − τ4(z)√

z2 − 4t2 [4 + 4 cos 2kτ2(z) + τ4(z)]
, (15)

that may be rewritten using the identity τ(z) = t/(z −
tτ(z)) in the form

G(k, z) =
1

z − a0−
b2
1

z − a1 − b2
2t
−1τ(z) [1 + F (z)]

, (16)

where

a0 =
t

2
ε , b2

1 = 3t2(1− 3
4
ε2) , a1 =

9ε3 − 6ε

8b2
1

t3,

b2
2 =

9(8− 7ε2)t4

16b2
1

, ε ≡ cos k, (17)

and the function F (z):

F (z) =
ε(1− ε2) V (z)
(8− 7ε2) W (z)

,

V (z) ≡ z(18ε4 − 27ε2 + 8) + 4ε(10− 9ε2)
−3(12ε4 − 21ε2 − 24)τ(z),
W (z) ≡ 2z2(4− 3ε2)− 2zε− 12
+11ε2 − [

2z(4− 3ε2)− ε
]
τ(z),

vanishes for k = 0, ±π
2 , ±π. For these k values we thus

readily obtain G(k, z) in the continued fraction form (3)
with an = a∞ = 0, b2

n = b2∞ = t2, n > 2 that follows
from (13). For other k values the coefficients asymptoti-
cally tend to the same constant limits a∞, b∞.

Figure 1 compares the analytical result for an, bn with
the values provided by the ED of a ring with L = 24 sites
at J = 0.01. One sees that the values of an with n ≤ 10
are not influenced by the boundary. These first values give
us bulk-related information. Comparing with other clus-
ter sizes L, one finds that an has no finite size effect for
n ≤ (L − 4)/2. For the off-diagonal elements bn one has
n ≤ (L − 4)/2 + 1. So, we may conclude that ED studies
of finite systems are able to provide the information that
concerns the macroscopic system and may be used for the
analysis of the spectral density. Despite the small number
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Fig. 1. The coefficients an(k) (filled circles) and bn(k) (open
circles) of the continued fraction expansion of the one-particle
Green’s function G(k, ω) versus n for k = π/2, J = 0.01 pro-
vided by the exact diagonalisation of the L = 24 sites t−J−J ′

ring compared with the result for the single spinon approxi-
mation (solid or dashed line, exact for J = 0, L = ∞). The
hopping parameter t = 1 is the unit of energy.

of ‘bulk related’ coefficients they definitely reached their
asymptotic regime and may be extrapolated to n → ∞
giving the exact Green’s function and spectral density for
infinite chain. The situation is not always so simple, but
this example clearly shows a manageable way to extrapo-
late ED results to the macroscopic system.

Concluding the consideration of the strong coupling
limit we recall that it is commonly believed that the main
changes in the spectral density at larger finite couplings
(i.e. J 6= 0) come from the appearance of the spinon dis-
persion εs, and may be accounted for by the substitution

εh(k −Q) → εh(k −Q) + εs(Q) (18)

in equations (10,11) [19,21]. Below we shall demon-
strate that holon and spinon scattering lead to additional
changes: the continuous part of the spectrum expands up
to infinite energies and for the case of the MG model,
additional discrete states appear.

5 Termination of the continued fraction

Now we concentrate on results for finite J, J ′. In the pre-
vious section we have shown that the few first recursion
coefficients given by the exact diagonalisation study of
a small cluster are (almost) not affected by boundaries.
Thus, in order to infer the shape of the spectral density
for macroscopic system we should rely on these ‘bulk re-
lated’ coefficients. To define the bulk related coefficients
we observe from Figure 2a that the coefficients for L = 12
start to deviate from the common line at n = 4, those for
L = 16 at n = 6 and for L = 20 at n = 8. The correspond-
ing numbers for bn (Fig. 2b) are 5, 7, and 9. Generalising

we find an: n < (L− 4)/2 and bn: n < (L− 4)/2+ 1 to be
bulk related coefficients. From the inset of Figure 2a we
clearly see that ‘bulk related’ coefficients for finite J, J ′
show a different tendency (to grow with moderate oscilla-
tions) compared to the rest of the sequence for a cluster
(strong oscillations around a constant value).

For finite J the number of bulk related coefficients is
slightly reduced in comparison to Figure 1. It should be
noted that the ‘bulk related’ coefficients with large n have
still a small finite size effect, but that is several orders
of magnitude smaller than for the rest of the sequence.
We have also observed that in the case of the pure t − J
model (i.e. J ′ = 0) the situation is worse. The number
of recursion coefficients that are not influenced by finite
size effects is considerably reduced. One may recall that
according to equation (2) the coefficients are related to
static spin correlation functions of the spin background
and speculate that the difference arises due to the alge-
braically decaying spin correlation functions for the 1D
Heisenberg model in difference to the exponential decay
for the MG model.

For the calculation of the spectral density we will try
to extrapolate the tendency shown by the ‘bulk related’
coefficients. In other words, we rewrite the expression (3)
in the form

G(k, z) =
b2
0

z − a0−
b2
1

z − a1− · · · b2
n0

z − an0 − Tn0(k, z)
, (19)

and try to find a function T̃n0 (a so called “terminator”)
that is close to Tn0 . The terminator should have such an
analytic behaviour which corresponds to the asymptotics
of an and bn.

Various ways to construct such approximations are de-
scribed in the literature on the recursion method (see
Refs. [8,9,23,24]). The asymptotic behaviour of contin-
ued fraction coefficients is governed by the band struc-
ture and the singularities of the spectral density [24]. The
problem is well studied for a bounded spectrum: {an} and
{bn} converge toward limits in the single band case, os-
cillate endlessly in a predictable way in the multiband
case. Damped oscillations are created by isolated singu-
larities. But the growth of coefficients indicates that the
spectrum we deal with is unbounded. The infinite growth
of diagonal coefficients is observed for the t − Jz model
that differs from the t− J model by omitting spin fluctu-
ations, an = nJz, b2

n = z0t
2, (z0 is the number of nearest

neighbours) [25]. This growth has a clear physical mean-
ing: a hole moving on the Néel background (the ground
state for t − Jz model without holes) creates a string of
overturned spins; every |un〉 state (1) is the combination of
such strings containing n overturned spins, thus its energy
〈un| t̂ + Ĵz |un〉 ∝ nJz. The non-diagonal coefficients bn

are constant. As a result, the hole is localised in the t−Jz

model, its spectral function does not depend on quasimo-
mentum k and consists of an infinite set of δ-functions.
The spectrum is discrete and unbounded [27].

When spin fluctuations are added the situation be-
comes more complicated, now the non-diagonal coeffi-
cients also grow. Such a situation was studied in the
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Fig. 2. The coefficients an(k) (full symbols, (a)), and bn(k) (open symbols, (b)) of the continued fraction expansion of the
one-particle Green’s function G(k, ω) versus n for k = π/2, J = 0.4 and various lattice sizes L = 12 (triangles and thin solid
line), 16 (diamonds and dotted line), 20 (squares and dash-dotted line), 24 (circles and thick solid line). The insert in panel (a)
shows an(k) on a larger scale.

two-dimensional t − J model as well as for spin-fermion
models of the CuO2 plane, where the following asymp-
totics was found within the framework of the self-
consistent Born approximation [29,30]:

bn ≈ λ1n + λ2 , an ≈ 2λ1n + λ3 , λi = λi(k), n � 1.
(20)

It indicates the existence of an exponential tail in the spec-
tral density. But the connection between an unbounded
spectrum (toward high energies) and the growth of re-
cursion coefficients is far more general. For example, the
model spectral density

A(ω) = ctωρ exp(−ωβ), c(β) =
2Γ (β)

[Γ (β/2)]2
, ω > 0,

with the parameters t, ρ, and β, gives the following asymp-
totic behaviour of the recursion coefficients [24]:

bn ≈
(

n

c(2β)

)1/β

, an ≈ 2
(

n

c(2β)

)1/β

,

which does not depend on t and ρ. For β = 1 we have a
linear dependence on n for {an} and {bn} [7].

The linear growth holds also for the MG model. Fig-
ure 3 shows the linear contributions to the growth of ‘bulk
related’ coefficients. We have found λ1, λ2 using least mean
square fit of the {bn} sequence and only λ3 was adjusted
for {an}. Figure 3 shows that our assumption about the
slope dan/dn ≈ 2dbn/dn holds.

The continued fraction expansion of the incomplete
Gamma function has the same asymptotics (20) and is
written as [31]

Γ (α, x) =
e−xxα

x + 1− α−
1 · (1− α)
x + 3− α−

2 · (2− α)
x + 5− α− · · ·

· · · n · (n− α)
x + (2n + 1− α)− · · · . (21)

We shall use this circumstance for the construction of the
terminator T̃N (k, z) for G(k, z) (19).

Let us introduce the model Green’s function

G̃(k, z) = −Γ (α, xe−ıπ)eıπα

λ1exxα
, (22)

with the spectral density

Ã(k, ω) =
1

λ1Γ (1− α)

[
(ω − ω0)

λ1

]−α

exp
[
− (ω − ω0)

λ1

]
.

(23)
Here x = (z − ω0)/λ1,

ω0 ≡ λ3 − 2λ2 − λ1, (24)

is the lower bound of the continuous spectrum, α = 2(M−
λ2/λ1), M is the integer part of λ2/λ1. The continued
fraction expansion coefficients for G̃(k, z) are

ãm = λ1(2m + 1− α) + ω0, m ≥ 0, b̃0 = 1 , (25)

b̃m = λ1

√
m(m− α) ≈ λ1(m− α/2), m > 0.

Comparing with the definition (20) we find

bn ≈ b̃M+n , an ≈ ãM+n.

Then we slightly generalise the recipe of reference [8] and
approximate [30]

T̃M+n0(k, z) =
q̃M+n0−1(k, z)− G̃(k, z)p̃M+n0(k, z)

q̃M+n0−2(k, z)− G̃(k, z)p̃M+n0−1(k, z)
≈ Tn0(k, z) . (26)

Here p̃n(k, z), q̃n(k, z) are polynomials of first and second
kind orthogonal with respect to the spectral density (23).
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Fig. 3. Comparison of the coefficients an(k) (filled circles joined by dashed lines) and bn(k) (open circles, solid lines) provided
by the exact diagonalisation of the L = 24 sites t− J − J ′ ring with the result of the single spinon approximation (thick dashed
and solid lines, correspondingly) for finite J = 0.4. The quasimomenta are k = π/2 (a) and k = 0 (b). The linear contributions
in the asymptotics of the exact coefficients (n → ∞: b̃n = c1n + c2, ãn = 2c1n + c3) are shown by dashed-dotted and dotted
lines, correspondingly.

They are calculated by the recursion relation [7,32]

p̃−1 = q̃−1 = 0 , p̃0 = 1, q̃0 = b̃2
0, (27)

p̃n = (z − ãn−1)p̃n−1 − b̃2
n−1p̃n−2,

q̃n−1 = (z − ãn−1)q̃n−2 − b̃2
n−1q̃n−3.

p̃n(k, z) are proportional to the generalised Laguerre poly-
nomials. In our calculations it holds always: λ2/λ1 > 0 and
−1 < α < 0.

We thus obtain G(k, z) in the whole complex energy
plane. It has the correct analytic properties and coincides
with the retarded Green’s function for z in the upper half
plane and with the advanced Green’s function for z in the
lower half plane. It has a branch cut on the real axis for
ω0 < z < ∞ that corresponds to the continuum part of
the spectrum. In addition, it may have isolated poles for
z < ω0 which represent quasiparticle excitations.

Figures 2 and 3 show that the recursion coefficients
oscillate around their asymptotics. The influence of these
oscillations on the spectral density was neglected so far.
For a bounded spectrum this is the indication of a multi-
band spectrum. The problem was well studied in refer-
ences [9,24]. In the case of one gap, i.e. a spectrum lying
in the disjoint intervals E1 ≤ ω ≤ E2 and E3 ≤ ω ≤ E4

(E2 < E3) any pair of neighbouring coefficients (y, x) =
(b2

n, an) or (b2
n+1, an) obeys the law [9](

x2 + A1x + A2 + 2y
)2

= X(−A1 − x) , (28)

with

A1 ≡ 1
2

∑
i

Ei , A2 ≡ 1
2

∑
i<j

EiEj − A2
1

2
,

X(z) ≡
∏

i

(z − Ei) .

This relation may be represented in phase space. In the
asymptotic limit, all pairs (b2

n, an) and (b2
n+1, an) should

lie on a single closed curve (28). The best fit provides
the band edges directly. After establishing the Ei values,
the relation (28) may be used for the extrapolation of co-
efficients beyond the known values. Figure 4 shows the
plot for the single spinon approximation (which leads to
a bounded spectrum) at k = 0 and J = 0.4 . Several
known values and their extrapolation form a single curve.
An analogous analysis for different k and J has shown that
in the single spinon approximation we have one gap in the
continuous part of the spectrum. The asymptotic regime is
reached for n > n0 ∼ 20 for k = 0, π. For the more struc-
tured spectral density at other k values the asymptotics is
reached after n0 ∼ 70. The bounds of the coefficients are

E1 + E4

2
− g < an <

E1 + E4

2
+ g , g ≡ E3 − E2

2
,

E4 − E1

4
− g

2
≤ bn ≤ E4 − E1

4
+

g

2
,

and the half gap value g ≈ 0.074 equals the amplitude
of oscillations. This relation between the amplitude of the
coefficient oscillations and the gap does not depend on the
total bandwidth E4 − E1. One may expect that it holds
also for an unbounded spectrum. We have modelled such
a spectrum by the creation of a gap in the spectral den-
sity (23). Then we have calculated the coefficients from
the gapped spectral density and we have found that they
oscillate around their asymptotics (20) with an amplitude
equal to half of the gap. As we have mentioned above, the
internal singularities lead to damped oscillations of the
coefficients. The restricted number of exact ‘bulk-related’
ED coefficients makes it impossible at present time to
analyse their oscillations in detail and to extract quan-
titatively the values and positions of the gaps.
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Fig. 4. Phase space representation of the recurrence law (28).
The open circles (squares) are pairs of {b2
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the full symbols correspond to extrapolated values.

6 Reconstruction of spectral density

One may summarise the following recipe of spectral den-
sity reconstruction from the Lanczos recursion coefficients:
i) Establish the number of recursion coefficients that are
not strongly affected by the boundaries. ii) Investigate
their asymptotics and find a model function that has a
continued fraction expansion with similar asymptotics, or
equivalently find a reliable procedure to extrapolate the
coefficients. iii) Calculate the Green’s function G(k, z) us-
ing expressions (19,26) (then z may be real) or directly (3)
(with complex z, the numerical efforts depend on the dis-
tance to the real axis) up to convergence. Then the spec-
tral density results from the definition (6).

As we have already mentioned, the number of bulk-
related coefficients for the Majumdar-Ghosh model (4) is
n0 ≈ (L − 4)/2, where L is the number of sites. We have
performed the ED for rings of the length up to 24 sites, i.e.
we have about 10 pairs of coefficients for every k value.
The last 6 pairs were used for the determination of the
parameters of the linear law (20) which are necessary to
terminate the continued fraction. Figure 5 shows the spec-
tral density A(k, z), z = ω + ıη for k = π/2, J = 0.4,
η = 0.01. On panel (a) the spectral density calculated ac-
cording to the above recipe (solid line) is compared with
the spectral density for the L = 24 sites ring (dotted line)
calculated with the same broadening η. The qualitative
difference of both curves is evident. The numerous peaks
in the interior of the band for the 24 sites ring arise due
to the strong oscillations of the recursion coefficients an,
bn with n > 14 (see the inset of Fig. 2a) in difference to
the linear increase of bulk coefficients. Therefore, our nu-
merical analysis of the recursion coefficients suggests that
the peaks in the interior of the band will be washed out
in the thermodynamic limit for k = π/2 and J = 0.4 and
only the two peaks at each extreme of the spectrum re-
main with the exception of a small feature near ω ≈ 0.4t
that is visible in panel (b) of Figure 5 showing the result

of the single spinon approximation with the same broad-
ening η = 0.01. That small feature arises due to the small
fluctuations (28) which were neglected in Figure 5a. It cor-
responds to a bound state in the gap, but all bound states
and gaps are smeared out for a broadening of η = 0.01
(compare with Fig. 6b). The essential difference with re-
spect to the ED spectrum (for the single spinon approx-
imation the spectrum is bounded) manifests itself as a
difference of the relative weight of the peaks, the higher
energy peak of ED being smoothed by the exponential tail
of the spectral density that tends up to ω →∞.

Figure 6 shows the spectral density A(k, ω + ıη) for
various k-values, J = 0.4. Panel (a) corresponds to the
ED with η = 0.01. The interpretation of the various peaks
as different collective excitations were already broadly dis-
cussed in reference [12]: the lower edge of the continuum
corresponds to the spinon excitation with a small disper-
sion of the order J . For k different from π/2 one can also
observe the holon peak with a much larger dispersion (pro-
portional t) and with a large damping [12].

For the single spinon approximation the law (28)
makes it possible to reveal the gap in the continuum part
of the spectrum at every k and the existence of quasipar-
ticle states outside the continuum spectrum and within
the gap. To show these features a very small broadening
of η = 0.0001 was used in panel (b).

Let us comment on the relationship to the ARPES
experiments for SrCuO2 and NaV2O5 [15]. They show a
main valence peak due to the oxygen 2p states and a small
foot at lower binding energy which can be interpreted in
terms of the one-band t-J-J ′ model. A detailed analysis
of the foot region allows to distinguish the spinon and
holon peaks as well as the spinon-holon continuum [15].
For SrCuO2 and at k = π/2 only the lower spinon peak
is visible and corresponds to the collective excitation at
ω ≈ −2t in Figure 5a. The higher peak is immersed into
the main valence band. The experimental result resem-
bles the continuum limit of the ED calculation where the
peaks in the interior of the band are washed out. It should
be noted that the differences between ED and recon-
structed spectral density are very small for low energies in
Figure 5a.

7 Bound states and band gaps

The existence of a quasiparticle state in the Majumdar-
Ghosh model (i.e. a bound state below the continuum)
was proved by ED in reference [22] by an analysis of the
system size dependence of the pole strength Zh corre-
sponding to the lowest eigenvalue. An analogous way was
used to show the existence of a quasiparticle in the sin-
gle spinon approximation [12] and in the diagrammatic
approach [33]. It was found that the single spinon approx-
imation gives Zh approximately twice as big as that of the
ED. That puzzle can be resolved when one takes into ac-
count the linear growth of the recursion coefficients which
does not show up in the single spinon approximation. The
linear growth may have an influence on the weight Zh.
From a physical point of view the quasiparticle in this
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Fig. 5. The spectral density A(k, ω + ıη) for k = π/2, J = 0.4, η = 0.01 (a), compared with the single spinon approximation
(b), also for η = 0.01. The solid line in panel (a) corresponds to the analytic termination of the exact Green’s function continued
fraction expansion after 9 levels. The termination is based on the coincidence of the asymptotic behaviour of the continued
fraction expansion of the incomplete Gamma function with the asymptotics of the coefficients shown in Figures 2 and 3a. The
dashed line is the spectral density for the ring with L = 24 sites.

Fig. 6. The spectral density A(k,ω + ıη) restored from the ‘bulk related’ coefficients of the exact Green’s function continued
fraction expansion for various k-values, J = 0.4, η = 0.01 (a). The spectral density A(k, ω+ıη) in the single spinon approximation
(b) for various k-values, J = 0.4, with η = 0.0001.

model represents the bound state of holon and spinon.
Scattering processes with the contribution of high energy
multispinon excited states that are not taken into account
in the single spinon approximation enlarge the probability
of decay of the bound state.

Figure 7 shows the relative weights of the hole wave
function decomposition over recursion vectors |un(k)〉 for
the three lowest eigenenergies (thick solid, thin solid and
dashed lines correspondingly) at the band minimum k =
π/2 . 90 recursive coefficients were taken: (a) ‘bulk-related’
ED coefficients, extrapolated by linear low; (b) single spi-
non approximation. A qualitatively different behaviour
is seen for the spin-polaron quasiparticle wave function
(thick line) and the wave functions that belong to the
continuum. The different large-n behaviour of recursion
coefficients leads to different radius of the polaron state.
For comparison, the dotted line on panel (b) shows the
change in the wave function caused by the addition of the

linear growth (20) to the single spinon approximation co-
efficients. The linear growth leads to a larger radius of the
polaron state and to a decrease of the weight Zh by nearly
a factor of two.

The physical origin of the gap in the continuum part
of the spectrum that is evident in the single spinon ap-
proximation may be understood as follows. Let us recall
that in the single spinon approximation we diagonalise
the Hamiltonian (4) within the subspace spanned by the
operator basis (9). (See the details in Sect. 5 and Ap-
pendix C of Ref. [12].) The Green’s function (5) for every
k is found from the solution of a generalised eigenvalue
problem that formally resembles an effective tight-binding
model (that is different for every k and is determined
by the spin background) with Hamiltonian Er,r′(k) in a
non-orthogonal basis with overlap matrix Sr,r′(k). The in-
dex r denotes the distance between ‘spinon’ and ‘holon’
in (9). The spectral density (6) formally coincides with the
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Fig. 7. The relative weights of the wave function decomposition over recursion vectors |un(k)〉 for the three lowest eigenenergies
(thick solid, thin solid and dashed lines, correspondingly) at the band minimum k = π/2. 90 recursive coefficients were taken: (a)
‘bulk-related’ ED coefficients, extrapolated by the linear law; (b) single spinon approximation. A qualitatively different behaviour
is seen for the spin-polaron quasiparticle wave function (thick line) and the wave functions that belong to the continuum. The
different large-n behaviour of the recursion coefficients leads to different radii of the polaron state. For comparison, the dotted
line on panel (b) shows the change in the wave function caused by the addition of the linear growth to the coefficients.

density of states of the effective model. In the limit J, J ′ →
0 both matrices E and S depend only on r − r′ and the
effective model is ’translationally invariant’ if we consider
r and r′ as site indices of the effective model. And we ob-
tain the results (10,11) making the Fourier transformation
over r − r′. This is the consequence of the degeneracy of
all spin states which makes it impossible for the holon to
scatter on inhomogeneities of the spin state. By switch-
ing on finite J and J ′ the matrix Er,r′(k) acquires two
contributions. One of them corresponds to the appear-
ance of the spinon coherent motion with the dispersion
εs(Q) = −2J cosQ. This contribution is also ‘translation-
ally invariant’ and leads to changes in the spectral den-
sity (11) described by (18). Another contribution comes
from the commutation of the ‘holon end’ of the opera-
tor (9) with the spin part of the Hamiltonian (4). It de-
scribes two processes, the loss of magnetic energy due to
the presence of the holon, and the holon-spinon scatter-
ing. The former participates in the bound state formation.
The latter has a contribution that is different for odd and
even r − r′, i.e. we observe a ‘period doubling’ in the ef-
fective Hamiltonian. This is intimately connected with the
dimerised nature of the Majumdar-Ghosh wave function.
It is interesting that this feature does not lead to a real pe-
riod doubling in the system, i.e. the Green’s function (5)
and the spectral density (6) have the whole Brillouin zone
periodicity, as we clearly see in Figure 6.

8 Summary

We propose a new way how to extract the information
about the infinite system from the exact diagonalisation
of small clusters. It is based on the consideration of Lanc-
zos recursion coefficients that are provided by ED. We

have found that the comparison of the results for several
cluster sizes allows to obtain the set of the coefficients
that are not affected by the finite size effects. These coef-
ficients contain the needed information about the macro-
scopic system. When it is possible to infer their asymptotic
behaviour (that may strongly differ for the ’bulk related
part’ compared to the rest of the set for a finite system) we
propose to restore the Green’s function and spectral den-
sity using the terminator technique [8]. This may consid-
erably improve the shape of the spectral density compared
to the direct ED result which gives the spectral function
in the form of a set of delta functions.
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by a NATO Collaborative Linkage Grant (PST.CLG. 976416).
R.O.K. thanks for hospitality the IFW Dresden, where the
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